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Abstract

Numerous frameworks on the job of 3D segmentation have
been published recently, although the majority of these meth-
ods rely on the separator characteristic of geometric models.
For example, the point cloud approach will result in the loss
of geometric shape connections. As a result, in order to pre-
serve the structure, we picked a mesh model to extract the
shape feature. Because various grid models need to extract
distinct shape representations and classic component segmen-
tation is difficult to handle with diverse 3D models. In this
study, we suggested a Deep Neural Network-based 3D Part-
based Segmentation frame. In this method, We first select and
augment the data obtained from the ABC data set to get the
input feature. Then we utilize ResUNet to improve efficiency
and generalization. The input feature is from the grid model,
and the output is the segmentation result of the 3D industrial
model. We can successfully solve the partial segmentation
problem of the complicated and irregular three-dimensional
model in this manner. We demonstrate the effectiveness of
our framework by applying it to publicly available CAD mesh
model data. Furthermore, the output of the CAD segment
mesh will assist in editing the input more quickly and con-
veniently.

Introduction
Recent years, with the rapid development of 3D-imaging
technology, low-cost miniaturized 3D sensors such as Mi-
crosoft Kinect, Intel’s RealSense and Google’s Tango can
capture 3D information of the scene very well, helping in-
telligent devices better perceive and understand the world,
and at the same time, to a large extent, promoting the de-
velopment of people’s exploration of acquiring real world
information in a three-dimensional way [2]. The segmenta-
tion of 3D scene is a basic and challenging problem in Com-
puter Vision and Computer Graphics. Its goal is to estab-
lish a computer technology that can predict the fine-grained
labels of objects in 3D scene, which is widely used in the
fields of automatic driving, mobile robots, industrial con-
trol, augmented reality and medical image analysis. 3D seg-
mentation can be divided into three types: semantic seg-
mentation, instance segmentation and partial segmentation.
Among them, semantic segmentation aims to predict the
tags of object classes, such as tables and chairs. Instance
segmentation distinguishes different in-stances of the same

type of label, such as table 1 or 2 and chair 1 or 2. Partial
segmentation aims to further decompose the instance into
different components, such as arm-rests, legs and backrests
of a chair. Compared with 2D segmentation, 3D segmenta-
tion provides a more comprehensive understanding of the
scene, because 3D data (such as RGB-D, point clouds, pro-
jected images, voxels, and meshes) contain more geometric,
shape, and scale information, while the background noise
is less [8]. With the iterative updating of GPU computing
power and the emergence of large 3D model data, the idea of
deep learning gradually occupies an absolute dominant po-
sition in 3D model classification, retrieval and other tasks.
Recently, deep learning technology has dominated many re-
search fields, including Computer Vision, speech recogni-
tion and Natural Language Processing. Due to the success in
learning effective features, the deep learning method for 3D
segmentation has also attracted more and more interest in the
research community in the past decade. However, 3D deep
learning methods still face many unresolved challenges. For
example, the features of RGB and depth channels are diffi-
cult to fuse, the irregularity of point clouds makes it difficult
to use local features, and the conversion of high-resolution
voxels requires huge computing resources, which makes the
technology of efficient, accurate and direct processing of 3D
data a widespread demand.

In this paper, we proposed the 3D Part-based Segmenta-
tion frame based on Deep Neural Network named ResUNet.
The faces are taken into account as the basic unit in mesh
data processing, and connections between faces that share
similar edges are formed. This approach allows us to ad-
dress the complexity and irregularity issues using perface
processes and a symmetry function. In addition, the fea-
tures of faces are divided into structural and spatial features.
Based on these assumptions, we construct the network ar-
chitecture for learning the primary features and combining
surrounding features. In this way, we can solve the part seg-
ment of the complex and irregular three dimension model
well.

Related work
Mesh segmentation is a fundamental research topic in geom-
etry processing and computer graphics. Mesh segmentation
aims to decompose a mesh, representing a 3D object, into
parts.In general, there are two major categories of mesh seg-



Figure 1: Baseline: Using the five special features as the input, we first select the varied data from the ABC dataset and
then utilize data augmentation to boost the diversity of the data. The embedding data will be added to the ResUNet using a
convolution and pooling method similar to MeshCNN.

mentation algorithms:
Chart-based segmentation.In this case, a given mesh sur-

face decomposes into charts, with the geometric entities (i.e.
vertices, edges and facets) of each chart satisfying similar
values of a specific shape feature or descriptor (e.g. pla-
narity, convexity and curvature) within a threshold or range.

Part-based segmentation.The primary objective of part-
based segmentation is to decompose a given 3D object into
meaningful parts (e.g. the fingers of a hand), though their
meaningfulness depends on the application at hand. In fact,
most algorithms to segment anthropomorphic, zoomorphic
and hand-made objects take advantage of the minima rule.
The aim in using this rule is to mimic the way the human vi-
sual system distinguishes segments from one another along
bound-aries defined by negative minima of the principal
curvatures[10, 1, 25]; In this latter case, parts are geometric
primitives, that is, a 3D object decomposes into primitives
such as planes, cylindrical patches, spherical patches and so
forth. In Part-Based Mesh Segmentation[17]they have iden-
tified three main categories of part-based segmentation tech-
niques.

• Volume-based segmentation. In this case, the segments
are volumes. The input is a 3D volumetric mesh, which
is then partitioned into 3D volumetric sub-meshes. These
sub-meshes possibly correspond to meaningful parts. In
fact, as argued by Hoffman and Richards[9], the volu-
metric convexity is oftenrelated to the human perception
of the shape and, consequently,shape seg-mentation.

• Surface-based segmentation. In this technique, the seg-
ments are2D sub-meshes or regions of a 2D triangle
mesh. Each regionconsists of a set of connected facets

that have similar geometricproperties (e.g. convexity,
curvature).

• Skeleton-based segmentation. In this technique, also
known asskeletonization, the segments are line seg-
ments. The input is either a 3D volumetric mesh or a 2D
surface mesh, but the output is a 1D skeleton that repre-
sents the structural shape of the mesh.

Recently, deep learning techniques have dominated many
areas of research. Deep learning for 3D segmentation has
also attracted increasing interest in the research community
over the past decade due to its success in learning power-
ful features.However, 3D deep learning approaches still face
many unsolved challenges. For example, features from RGB
and depth channels are difficult to use. The irregularity of
point clouds makes the low-heat features difficult to utilize,
and the computational burden of converting them into high-
resolution voxels is enormous.

Deep learning technology has also recently become the
tool of choice for 3D task segmentation. This has led to an
influx of methods in the literature that have been evaluated
on different baseline datasets. Semantic segmentation[3],[5],
[19] aims to predict object class labels such as table and
chair. Instance segmentation[6], [16], [20] also distinguishes
between different instances of the same class labels e.g. ta-
ble one/two and chair one/two. Part segmentation [11], [22],
[24] aims to further decompose instances into their differ-
ent components such as arms, legs and backrest of the same
chair. It is the next more elaborate level after instance seg-
mentation, and its purpose is to mark different parts of the
instance.



Data
we use the obj data formation of the ABC dataset[12]. It is
a collection of one million computer aided design (CAD)
models used to study deep learning methods and applica-
tions for geometry.

Figure 2: Examples from the ABC-Dataset. Most models are
mechanical parts with sharp edges and well defined surfaces.

Data process.
In order to increase the classification diversity and keep the
network stabilized we process the ABC dataset by data se-
lection and data augmentation.

• data selection: fist we abandon the no-manifold mesh
data and in order to keep the model pooling work we
only chose the CAD structure in which the mesh is larger
than its least pooling threshold.

• data augmentation: because the three dimensions dataset
focuses on the easy structure and has some simple mod-
els which can not be segmented. As well, to increase the
data multiplicity we do data augmentation on gmesh to
comprise our existing data.

Gmsh is an open source 3D finite element mesh generator
with a built-in CAD engine and post-processing program. It
was designed to provide a fast, lightweight and user-friendly
grid tool with parameter input and flexible visualization ca-
pabilities. Gmsh is built around four modules (geometry,
mesh, solver and post-processing), that can be controlled
from the command line via a graphical user interface us-
ing text files written in Gmsh’s own scripting language(.geo
files), or application programming interfaces such as C++,
C, Python, Julia and Fortran.

Part-based segmentation framework
Input feature
In order to perform convolution on the grid better, we de-
sign the input edge features as a 5-dimensional vector for
each edge: the dihedral angle of each face, the ratio of two
side lengths, and the two interior angles. The edge ratio
ranges between the perpendicular to each adjacent face and
the length of the edge. By sorting the side length ratio and
interior angle of two face-based features, the ambiguity and
invariance of the sorting are ensured(see Figure 3). Since the

observed features are relative, they are made invariant to ro-
tation, uniform scaling, and translation.

Figure 3: Select input features for every mesh
.
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convolution
This paper assumes that all shapes are represented by man-
ifold networks, possibly carrying boundary edges. Such a
setting ensures that each edge is incident on at most two tri-
angle faces and will be adjacent to two or four other edges.
Since face vertices are arranged counterclockwise, there are
two possible orders for the four adjacent vertices of each
edge. For example, in Figure 4, the 1-ring neighbors of e
can be sorted as (c,d,a,b) or (a,b,c,d). The order of arrange-
ment depends on which face is set as the first neighbor. Dif-
ferent orderings make the receptive field of the convolution
ambiguous, hindering the generation of invariant features.

In response to this problem, we take two measures to en-
sure the invariance of similarity transformations (scaling, ro-
tation and translation) in the network. Edge input descriptors
are first designed by only containing relative geometric fea-
tures fixed to the similarity transformation. Second, the four
1-ring edges are fused into two pairs of ambiguous edges,
and the new symmetric features are convolved to remove all
order ambiguities

Figure 4: The four adjacent nodes of each edge have two
possible orders

.



pooling
On each side of the collapsed edge, only one pair of edges
must be merged. This can be checked by counting the joint
neighbour vertices of the two merging vertices (there must
be exactly two). Consider the following example where the
red edge is being col-lapsed: he triangle between the orange
and cyan edge is not manifold anymore.

We use a priority queue to prioritize the folding order of
edges by the size of the edge features, allowing the network
to choose the part that is relevant to the solving task. This
allows the network to choose to non-uniformly collapse re-
gions that contribute little to the loss. If you fold an edge that
is adjacent to both faces, then three edges are deleted (Fig-
ure 6), since two faces merge into one edge[7]. Each face
has three sides: the two smallest sides are adjacent. By tak-
ing the average value of each feature channel, the features
on the three selected edges in each face are fused into a new
edge feature.

The priority of edge collapse is distinguished by the
strength of edge features, which are considered as l2-norm.
There are two merge operations in the aggregation feature. A
merge is performed on the triangles of each face of the min-
imum edge feature e and produces two new feature vectors.
After each update of Pooling, the structural features will be
saved, so that the global features can be preserved, which
can reduce the running time and improve the efficiency when
extracting and comparing the feature structure next time, but
this will also increase a certain amount of storage space.

Figure 5: Mesh simplification technique edge collapse
.

unpooling
Unpooling can be understood to some extent as the re-verse
of pooling[18].It is commonly used for recovering the virgin
resolution lost in the pooling operation[21]. While pooling
layers reduce the resolution of the feature activations (en-
coding or compressing information), unpooling layers in-
crease the resolution of the feature activations (decoding
or uncompressing information). Pooling operation also keep
detailed records from merge operations (e.g., maximum po-
sition) and we will use them to expend the features in un-
pooling. The unpooling and pooling layers are in one-to-one
correspondence, so that the mesh topology and edge features
can be recovered by up-sampling,by storing the connectivity
prior to pooling. Note that upsampling the connectivity is a
reversible operation (just as in images).[7] After unpooling
operation of the features extracted from the edges, we regain
a graph with the adjacency from the original edge (before
pooling) to the new edge (after pooling). Every edge feature

that has undergone the unpooling operation is a weighted
combination of edge features that have undergone the pool-
ing operation.

Figure 6: The case of pooling and unpooling
.

ResUnet
Resunet retains the advantages of both residual networks and
UNet. The residual network simplifies the network training,
makes the gradient explosion problem alleviated, and en-
ables to build a deeper network structure; the constant map-
ping designed in the residual unit can facilitate the transfer
of information from the lower to the higher layers of UNet,
which enables to achieve better segmentation with fewer pa-
rameters, while the connection between the encoder and de-
coder corresponding to UNet can help the upper sampling
layer to better recover image details[23].

Figure 7: The architecture of ResUnet
.

And in order to avoid the data from augmentation pre-
fer to predict the one special type, we use the AdamW
opti-mizer.AdamW is an improved algorithm based on Ad-
am+L2 regularization, including decoupled weight decay
regularization.Using Adam to optimize the loss function
with L2 regularization is not effective. If the L2 regulari-
zation term is introduced[4], the result of finding the gradi-
ent against the regularization term is added to the calcula-
tion of the gradient.Therefore if some weights are inher-
ently larger, the corresponding gradient will also be larger,
and since the subtraction term in the Adam calculation step
will have the accumulation of dividing by the squared gradi-
ent, making the subtraction term small. Common sense says
that the larger the weight should be penalized, but this is not
the case in Adam.Instead, the weight decay is updated us-



ing the same coefficients for all weights, and the larger the
weight the larger the penalty is obviously[14].

θt ← θt−1 − ηt

(
α̂mt√
v̂t + ϵ

+ λθt−1

)
(2)

Discussion
The experiment (Figure 8) shows the pooling update helps
us keep the structure because the former only pooling
method focus on the local classification information, so it
may be interesting for us to discover that it will be pooling
a person end with its body. But by using the pooling update
the human will keep its limb structure.

Max pooling and average pooling are widely used pooling
techniques[10]. They are used in local and global pooling
layers, the suitability of which depends on the application.
Max pooling considers only the most activated elements in
each feature map and treats all other activations as insignifi-
cant. This active element can be noisy.

Figure 8: The pooling step on human body(The first line in
the picture is the pooling process of meshCNN, and the fol-
lowing is our pooling process, which retains the global struc-
tural features).

And to show the data augmentation help some special
type of structure to get more precise classification.As can
be seen from the chart(Figure 9), for plane processing, the
accuracy of segmentation and augmentation segmentation is
very high and the difference is not large; the accuracy of

Figure 9: Accuracy of segment and augmentation segment
.

Framework Segment accuracy
Our 93.23
MeshCNN[7] 92.3
MeshWalker[13] 94.8
PDMesh[15] 91.11

Table 1: Comparison of various frameworks

Figure 10: Some abc dataset segmentaion result
.

revolution segmentation is very low, but the accuracy of aug-
mentation segmentation is slightly higher than that of ordi-
nary segmentation; for sphere Processing, the accuracy of
the augmentation segmentation is significantly higher than
that of the normal segmentation, almost twice it.

And the most important the segmentation between us and
other peoples work. Segmentation accuracy for the entire
frame. Our method has great advantages.

Our experiments show that max pooling works well when
class-specific features (e.g., abnormal regions in medical
images) are small compared to the image size. During the
learning phase of the network, only the network nodes con-
nected to this maximum activation element will be updated,
which makes the learning speed of the network slower. Max
pooling is usually applied in the early stages of the network
to capture important local image features. This is appropriate
when the size of the image is large enough. From abc dataset
do data selection and data augumentation ,and then use the
mesh processing to input the resemble feature of mesh input
the use resunet and meshcnn method to get segmentation re-
sult.

The experiment demonstrates that the network we en-
hance performs more effectively than the model it replaces.
This is due to the use of data expansion, in which gmsh
builds composite samples of parametric surfaces with uni-
formly distributed random parameters to enhance classifica-
tion performance. In order to offer parameters for later ed-
itable CAD, we classify divided surfaces. We incorporate an
update method throughout each phase of the pooling pro-
cess to assist us maintain order. Additionally, in order to
avoid overfitting, we train our model with ResUNet and the
AdamW optimizer.
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